

ATTESTATION D'ACCREDITATION

ACCREDITATION CERTIFICATE

N° 2-22 rév. 11

Le Comité Français d'Accréditation (Cofrac) atteste que : The French Committee for Accreditation (Cofrac) certifies that :

LABORATOIRE NATIONAL DE METROLOGIE ET D'ESSAIS

N° SIREN: 313320244

Satisfait aux exigences de la norme **NF EN ISO/IEC 17025 : 2017** Fulfils the requirements of the standard

et aux règles d'application du Cofrac pour les activités d'analyses/essais/étalonnages en : and Cofrac rules of application for the activities of testing/calibration in :

OPTIQUE / RADIOMETRIE - PHOTOMETRIE - TRANSMISSION ET REFLEXION OPTIQUE - FIBRONIQUE

OPTIC / RADIOMETRIE - PHOTOMETRY - TRANSMISSION AND OPTICAL REFLECTION - FIBRONIQUE

réalisées par / performed by :

LNE - Laboratoires de Trappes 29, rue Roger Hennequin 78197 TRAPPES Cedex

et précisément décrites dans l'annexe technique jointe and precisely described in the attached technical appendix

L'accréditation suivant la norme internationale homologuée NF EN ISO/IEC 17025 est la preuve de la compétence technique du laboratoire dans un domaine d'activités clairement défini et du bon fonctionnement dans ce laboratoire d'un système de management adapté (cf. communiqué conjoint ISO-ILAC-IAF en vigueur disponible sur le site internet du Cofrac www.cofrac.fr)

Accreditation in accordance with the recognised international standard NF EN ISO/IEC 17025 demonstrates the technical competence of the laboratory for a defined scope and the proper operation in this laboratory of an appropriate management system (see current Joint ISO-ILAC-IAF Communiqué available on Cofrac web site www.cofrac.fr).

Le Cofrac est signataire de l'accord multilatéral d'EA pour l'accréditation, pour les activités objets de la présente attestation.

Cofrac is signatory of the European co-operation for Accreditation (EA) Multilateral Agreement for accreditation for the activities covered by this certificate.

Date de prise d'effet / granting date : 01/05/2024 Date de fin de validité / expiry date : 31/07/2027 Pour le Directeur Général et par délégation On behalf of the General Director

Le Responsable du Pôle Bâtiment-Electricité, Pole manager - Building-Electricity,

DocuSigned by:
Kerna MOUTARD
55593B3E8C2345D...

La présente attestation n'est valide qu'accompagnée de l'annexe technique. This certificate is only valid if associated with the technical appendix.

L'accréditation peut être suspendue, modifiée ou retirée à tout moment. Pour une utilisation appropriée, la portée de l'accréditation et sa validité doivent être vérifiées sur le site internet du Cofrac (www.cofrac.fr).

The accreditation can be suspended, modified or withdrawn at any time. For a proper use, the scope of accreditation and its validity should be checked on the Cofrac website (www.cofrac.fr).

Cette attestation annule et remplace l'attestation N° 2-22 Rév 10. This certificate cancels and replaces the certificate N° 2-22 Rév 10.

Seul le texte en français peut engager la responsabilité du Cofrac. The Cofrac's liability applies only to the french text.

Comité Français d'Accréditation - 52, rue Jacques Hillairet 75012 PARIS

Tél.: +33 (0)1 44 68 82 20 - Fax: 33 (0)1 44 68 82 21 Siret: 397 879 487 00031 www.cofrac.fr

ANNEXE TECHNIQUE à l'attestation N° 2-22 rév. 11

L'accréditation concerne les prestations réalisées par :

LNE - Laboratoires de Trappes 29, rue Roger Hennequin 78197 TRAPPES Cedex

Dans son unité technique :

- Pôle Photonique - Energétique (2-22)

Elle porte sur : voir pages suivantes

<u>Portée flexible FLEX3</u>: Le laboratoire peut employer, adapter ou développer d'autres méthodes (équivalentes en terme de principe) sans toutefois que les incertitudes relatives mentionnées ci-après (portée détaillée) ne soient inférieures aux possibilités en matière de mesures et d'étalonnages ("CMC") répertoriées dans la base de données du BIPM ("KCDB", base de données des comparaisons clés), liées à la mise en place de l'accord de reconnaissance du CIPM. La portée détaillée mentionnée est tenue à jour par le laboratoire.

Portée générale

N°	Matériaux, Produits, Type d'activité	Principe de mesure, propriété mesurée	Méthode d'étalonnage (norme, méthode développée par le laboratoire, méthode publiée)
2	Etalonnage de luxmètres en éclairement lumineux	Comparaison à l'éclairement mesuré par un luxmètre étalon	Méthode développée par le Laboratoire
3	Etalonnage de luminancemètres en luminance lumineuse	Comparaison à un photomètre de référence du laboratoire	Méthode développée par le Laboratoire
3bis	Étalonnage de source de luminance en luminance lumineuse	Mesure directe avec un photomètre de référence	Méthode développée par le Laboratoire
4	Etalonnage en éclairement de radiomètres UV	Comparaison aux étalons du laboratoire	Méthode développée par le Laboratoire
6	Mesure de la sensibilité spectrale de photorécepteurs, détecteurs, radiomètres	Comparaison à des récepteurs étalons par substitution devant un faisceau monochromatique	Méthode développée par le Laboratoire
7	Mesure du facteur de transmission spectral et de la densité spectrale régulière	Comparaison des flux incidents et transmis par l'échantillon avec un spectrophotomètre	Méthode développée par le Laboratoire
8	Mesure du facteur de réflexion spectral diffus	Comparaison par rapport à un matériau de référence à l'aide d'un spectrophotomètre muni d'une sphère d'intégration ou de l'accessoire 0/45	Méthode développée par le Laboratoire
8bis	Facteur de luminance spectral (matériaux diffusants)	Comparaison par rapport à un matériau de référence à l'aide d'un spectrophotomètre muni de l'accessoire 0/45	Méthode développée par le Laboratoire
9	Calculs colorimétriques (Colorimètre, Spectrocolorimètre, Source, Filtre coloré, matériau réfléchissant étalon)	Calcul des coordonnées colorimétriques et des grandeurs qui s'en déduisent (divers systèmes de coordonnées, température de couleur proximale, à partir d'un spectre fourni ou mesuré)	Application des méthodes de calcul préconisées par la CIE.

N°	Matériaux, Produits, Type d'activité	Principe de mesure, propriété mesurée	Méthode d'étalonnage (norme, méthode développée par le laboratoire, méthode publiée)
10	Mesure du brillant spéculaire (Brillancemètre, glossmeter, réflectomètre)	Comparaison à un verre étalonné en indice de réfraction	Norme NF T30-064 ISO2813 Méthode adaptée par le Laboratoire
11	Étalonnage de sources en intensité lumineuse	Comparaison aux étalons du Laboratoire à l'aide d'un photomètre photoélectrique	Méthode développée par le Laboratoire
11bis	Etalonnage de sources en flux lumineux	Comparaison aux étalons du laboratoire à l'aide d'un lumenmètre à sphère intégrante ou d'un goniomètre	Méthode développée par le Laboratoire
12	Etalonnage de sources en éclairement et en intensité spectrique	Comparaison au moyen d'un spectroradiomètre des éclairements spectriques d'un diffuseur éclairé successivement par la lampe étalon puis la source à étalonner	Méthode développée par le Laboratoire
12bis	Etalonnage de sources en luminance énergétique spectrique	Comparaison aux étalons avec le spectroradiomètre	Méthode développée par le Laboratoire
14	Détermination de la position spectrale des extrema de transmission d'un filtre	Analyse spectrale au moyen d'un spectrophotomètre ou spectromètre IR	Méthode adaptée d'une méthode développée par le laboratoire
15	Étalonnage de fluxmètres (radiomètres pour flux de chaleur)	Réponse à un corps noir étalon ou comparaison à un fluxmètre étalon	Méthode développée par le laboratoire
16	Etalonnage de radiomètres mesurant les puissances ou énergies de faisceaux laser (Radiomètre laser, joulemètre)	Comparaison à un radiomètre étalon devant un laser du Laboratoire National de Métrologie	Méthode développée par le laboratoire
18	Etalonnage en flux énergétique d'un radiomètre fibré	Comparaison à un radiomètre étalon	Méthode développée par le Laboratoire
19	Atténuateurs pour fibres optiques unimodales	Rapport des flux mesurés avec un radiomètre étalon	Méthode développée par le Laboratoire
20	Etalonnage d'étalons d'indice de réfraction	Minimum de déviation pour les prismes, mesure de déviation pour des lames	Méthode décrite dans les ouvrages de référence

N°	Matériaux, Produits, Type d'activité	Principe de mesure, propriété mesurée	Méthode d'étalonnage (norme, méthode développée par le laboratoire, méthode publiée)
21	Etalonnage de pyranomètres	Comparaison à un pyranomètre étalon avec un simulateur solaire	
22	Etalonnage de Spectroradiomètres portables d'usage général	Mesure directe de sources étalons	Méthode développée par le laboratoire
23	Etalonnage de Spectroradiomètre pour mesure de lampes à spectre étendu dans l'UV	Comparaison à un spectroradiomètre étalon	Méthode développée par le laboratoire

Portée détaillée

	OPTIQUE/Radiométrie-Photométrie/Luxmètres						
Référence portée générale	Domaine de mesure	Incertitude élargie	Méthode et moyens mis en œuvre				
		Incertitude relative					
2	0,1 à 2 lux	2,3 × 10 ⁻²	Comparaison à un luxmètre étalon devant une source à incandescence de température de couleur connue				
_	2 à 10 ⁴ lux		Méthode interne 321M0509 : Etalonnage des luxmètre				
	10⁴ à 5 × 10⁴ lux	2,5 × 10 ⁻²					

	OPTIQUE/Radiométrie-Photométrie/Luminancemètres							
Référence portée générale Domaine de mesure élargie			Méthode et moyens mis en œuvre					
3	0,1 à 5 cd/m²		Comparaison à un photomètre de référence du laboratoire à l'aide d'une source à incandescence de température de couleur connue					
	5 à 3 × 10 ³ cd/m ²	2 × 10 ⁻²	Méthode interne 321M0510 : Etalonnage des luminancemètres et sources de luminance en luminance lumineuse					
	$3 \times 10^3 \text{ à } 5 \times 10^4 \text{ cd/m}^2$	2 × 10 ⁻²	iumilieuse					

	OPTIQUE/Radiométrie-Photométrie/Sources de luminance						
Référence portée générale Domaine de mesure élargie			Méthode et moyens mis en œuvre				
		Incertitude relative					
2hio	0,1 à 5 cd/m²	3 × 10 ⁻²	Mesure directe avec un photomètre de référence				
3bis	5 à 3 × 10 ³ cd/m ²	2 × 10 ⁻²	Méthode interne 321M0510 : Etalonnage des luminancemètres et sources de luminance en luminance				
	$3 \times 10^3 \text{ à } 5 \times 10^4 \text{ cd/m}^2$	2 × 10 ⁻²	lumineuse				

	OPTIQUE/Radiométrie-Photométrie/Radiomètres							
Référence portée générale	i Domaine de mestire l		Méthode et moyens mis en œuvre					
	0,1mW/cm² à 30 mW/cm² (365nm)	Incertitude relative	Comparaison aux étalons du laboratoire en lumière d'une lampe au mercure filtrée					
	0,1mW/cm² à 6 mW/cm² (313nm)	6 %	321M0505 : Etalonnage des radiomètres à 254, 313, 365 et 405 nm					
4	0,1 mW × cm ⁻² à 10 mW × cm ⁻²	Incertitude relative	Comparaison aux étalons du laboratoire en lumière d'une lampe au Xénon filtrée					
4	(460 nm)	7 %	321M0508 : Etalonnage des radiomètres 460 nm					
	0,1 à 6 mW × 5cm ⁻²	Incertitude relative	Comparaison aux étalons du laboratoire en lumière d'une lampe au Xénon filtrée normalisée selon la norme NF 20540					
	(300 nm à 400 nm)	10 %	321M0519 : Etalonnage des radiomètres 365 nm pour la bande 300-400 nm					

OPTIQUE/Radiométrie-Photométrie/sensibilité spectrale Référence portée Domaine de mesure Incertitude élargie Méthode et moyens mis en œuvre générale Incertitude relative Longueurs d'onde (%) 2,6 200 à 350 nm Comparaison à des récepteurs étalons par substitution devant un faisceau 350 à 400 nm 1,8 monochromatique. 6 400 à 500 nm 0,9 321M0526 : Etalonnage des détecteurs en sensibilité spectrale 1μW à 50 μW 8,0 500 à 950 nm 321M0539 : Etalonnage en sensibilité spectrale de détecteurs ultraviolets 1,2 950 à 1 300 nm 1 300 à 1 500 nm 1,3 1 500 à 1 700 nm 1,4

	OPTIQUE/Transmission et réflexion optique/facteur de transmission régulière								
Référence portée générale	Domaine de mesure		Incertitude élargie				Méthode et moyens mis en œuvre		
		Domaine spectral (± 5 nm)							
	Transmission	240-380 nm	380- 780nm	780-800 nm	800-2300 nm	2300- 2500nm			
	1	0,004 1	0,004 1	0,004 1	0,007 0	0,012			
	0,5	0,002 4	0,002 4	0,002 4	0,004 0	0,006 5			
	0,3	0,002 0	0,002 0	0,002 0	0,002 9	0,004 4			
	0,1	0,001 9	0,001 9	0,001 9	0,001 9	0,002 4	Comparaison des flux incidents et transmis par l'échantillon au moyen d'un		
7	0,05	0,001 2	0,000 99	0,001 2	0,001 7	0,001 9	spectrophotomètre ou d'un monochromateur.		
	0,01	0,001 1	0,000 23	0,001 1	0,001 5	0,001 9	321M0522 : Perkin-Elmer Lambda 18 : utilisation 321M0523 : Perkin Elmer Lambda 900 : utilisation en transmission		
	0,005	0,001 1	0,000 14	0,001 1	0,001 4	0,0001 5	régulière		
	0,001	_	0,000 059	_	_	_			
	0,000 5	_	0,000 050	_	_	_			
	0,000 1	_	0,000 042	_	_	_			

	OP'	TIQUE/Transı	mission et réf	lexion optique	e/facteur de transmission régulière
Référence portée générale	Domaine de mesure	Incertitude élargie			Méthode et moyens mis en œuvre
	Densité spectrale	Doma	aine spectral (±	: 5 nm)	
	régulière	240-380 nm	380-780 nm	780-800 nm	
	0	0,001 8	0,001 8	0,001 8	
	0,3	0,002 3	0,002 3	0,002 3	
	0,53	0,002 9	0,002 9	0,002 9	
7	1	0,006 0	0,008 5	0,006 0	Calcul à partir de la valeur du facteur de transmission spectrale régulière mesurée
ľ	1,3	0,011	0,008 6	0,011	avec un spectrophotomètre
	2	0,048	0,010	0,048	321M0522 : Perkin-Elmer Lambda 18 : utilisation 321M0523 : Perkin Elmer Lambda 900 : utilisation en transmission régulière
	2,3	0,095	0,012	0,095	
	3,000		0,026		
	3,301	_	0,043	_	
	4,00	_	0,18	_	

Note : Ces incertitudes sont valables pour un filtre neutre. Si le filtre a une forte variation du facteur de transmission en fonction de la longueur d'onde, un terme proportionnel $d\tau/d\lambda$ est à prendre en compte (le facteur de transmission spectrale étant noté τ).

	OPTIQUE/Tr	ansmission et réflexio	n optique/facteur spectrale de réflexion diffuse
Référence portée générale	Domaine de mesure	Incertitude élargie	Méthode et moyens mis en œuvre
	250 nm à 280 nm (± 0,5 nm)	0,0008 + 0,0255 ρ	
	280 nm à 305 nm (± 0,5 nm)	0,0008 + 0,0155 ρ	
	305 nm à 700 nm (± 0,5 nm)	0,0009 + 0,008 ρ	
	700 nm à 830 nm (± 0,5 nm)	0,0025 + 0,004 ρ	Comparaison des flux incidents et réfléchis par l'échantillon à l'aide d'un spectrophotomètre
8	830 nm à 1 700 nm (± 1 nm)	0,0052 + 0,0021 ρ	muni d'une sphère d'intégration
	1 700 nm à 2 200 nm (± 1 nm)	0,0078 + 0,0042 ρ	321M0524 : Perkin-Elmer Lambda 900 : utilisation avec l'accessoire sphère
	2 200 nm à 2 300 nm (± 1 nm)	0,0115 + 0,004 ρ	
	2 300 nm à 2 400 nm (± 1 nm)	0,0097 + 0,012 ρ	
	2 400 nm à 2 500 nm (± 1 nm)	0,0073 + 0,022 ρ	

Commentaire : nouvelle rédaction plus détaillée, les valeurs exactes de l'incertitude varient avec la longueur d'onde dans chaque bande du tableau ci-dessus en restant inférieures à 1,05 fois la valeur mentionnée.

 $[\]rho$: facteur spectral de réflexion diffuse, λ : longueur d'onde

	OPTIQUE/Transmission et réflexion optique/facteur spectrale de réflexion diffuse							
Référence portée générale	Objet	Domaine de mesure	Incertitude élargie	Méthode et moyens mis en œuvre				
8bis	8bis Configuration 0°/45° Domaine spectral 360 nm à 780 nm ± 0,5 nm (0,004)		(0,004 + 0,015β)	Comparaison des flux incidents et réfléchis par l'échantillon à l'aide d'un spectrophotomètre muni d'un accessoire 0/45 321M0525 : Étalonnage des étalons de réflectance en géométrie 0°-45°				

 $\beta :$ facteur de luminance spectral , $\lambda :$ longueur d'onde

	OPTIQUE/Radiométrie-Photométrie/coordonnées trichromatique x,y,Y							
Référence portée générale	Objet	Domaine de mesure	Incertitude élargie	Méthode et moyens mis en œuvre				
0	o Matériaux par	Incertitude $0,002 < x < 0,75$ $0,002 < y < 0,85$ Application des méthodes de calcul préconisée	Application des méthodes de calcul préconisées par la CIE, systèmes normalisés					
9 transmission	0,5 < Y < 100	Incertitude relative 0,5 %	selon NF X08-014					

Note 1 : Les calculs des caractéristiques colorimétriques sont effectués à partir des mesures spectrophotométriques du laboratoire, pour des longueurs d'onde comprises entre 380 nm et 780 nm, à partir des tables CIE tabulées tous les 5 nanomètres.

Note 2 : les incertitudes ont été calculées pour des objets spectralement neutres. Pour des objets colorés, cette incertitude est augmentée au cas par cas.

OPTIQUE/Radiométrie-Photométrie/coordonnées trichromatique x,y,Y						
Référence portée générale	Objet	Domaine de mesure	Incertitude absolue (A) ou relative (R)	Méthodes et moyens mis en œuvre		
		0,002< x <0,75	Incertitude absolue			
0	Matériaux par	0,002 < y < 0,85	7 × 10 ⁻⁴	Application des méthodes de calcul préconisées par la CIE, systèmes		
9	réflexion	réflexion	Incertitude relative	normalisés selon NF X08-014		
		0,5 < Y < 100	0,8 %			

Note 1 : Les calculs des caractéristiques colorimétriques sont effectués à partir des mesures spectrophotométriques du laboratoire, pour des longueurs d'onde comprises entre 380 nm et 780 nm, à partir des tables CIE tabulées tous les 5 nanomètres.

Note 2 : Les incertitudes ont été calculées pour des objets spectralement neutres. Pour des objets colorés, cette incertitude est augmentée au cas par cas.

	OPTIQUE/Radiométrie-Photométrie/coordonnées trichromatique pour une source							
Référence portée générale	Domaine de mesure	Incertitude absolue	Méthodes et moyens mis en œuvre					
	0,002< x ou x ₁₀ <0,75 0,002 < y ou y ₁₀ < 0,85	1,5 × 10 ⁻³ à 5,0 ×10 ⁻³						
9	0,002< u ou u ₁₀ <0,65 0,005 < v ou v ₁₀ < 0,4	$6.0 \times 10^{-4} \text{ à } 1.0 \times 10^{-3}$	Application des méthodes de calcul préconisées par la CIE, systèmes normalisés selon NF X08- 014					
	0,002< u' ou u' ₁₀ <0,65 0,005 < v' ou v' ₁₀ < 0,4	$6.0 \times 10^{-4} \text{ à } 1.0 \times 10^{-3}$	321M0532 : Etalonner les sources en grandeurs spectroradiomètriques et colorimétriques					
	1 700 K < T _{cp} < 10 000 K	15 à 100 K						

OPTIQUE/Radiométrie-Photométrie/coordonnées trichromatique pour un colorimètre ou un spectrocolorimètre							
Référence portée générale	Domaine de mesure	Incertitude absolue	Méthodes et moyens mis en œuvre				
	0,002< x ou x ₁₀ <0,75 0,002 < y ou y ₁₀ < 0,85	0,0028 à 0,0038 0,0015 à 0,0039					
9	0,002< u ou u ₁₀ <0,65 0,005 < v ou v ₁₀ < 0,4	0,0015 à 0,0025 0,00060 à 0,0018	Application des méthodes de calcul préconisées par la CIE, systèmes normalisés selon NF X08- 014 321M0513 : Etalonnage des spectrocolorimètres et colorimètres en coordonnées trichromatiques				
	0,002< u' ou u' ₁₀ <0,65 0,005 < v' ou v' ₁₀ < 0,4	0,0015 à 0,0025 0,00060 à 0,0027	et température de couleur proximale				
	1 700 K < T _{cp} < 10 000 K	31 K à 520 K					

Note 1 : Les calculs des caractéristiques colorimétriques sont effectués à partir des mesures spectroradiométriques du laboratoire, pour des longueurs d'onde comprises entre 380 nm et 780 nm, à partir des tables CIE tabulées tous les 5 nanomètres.

OPTIQUE/Radiométrie Photométrie/Brillant spéculaire							
Référence portée générale Domaine de mesure Incertitude élargie Méthode et moyens mis en œuvre							
10	80 à 120	Incertitude absolue 0,1 ub pour 20° 0,2 ub pour 60° 0,3 ub pour 85°	Norme NF T30-064 "Mesurage de la réflexion spéculaire des feuilles de peinture non métallisés à 20°, 60° et 85°". 321M0804 : Etalonnage en brillant spéculaire d'un échantillon Réglage du banc				

OPTIQUE/Radiométrie-Photométrie/Sources en intensité lumineuse							
Référence portée générale	Référence portée générale Domaine de mesure Incertitude élargie Méthode et moyens mis en œuvre						
44		Incertitude relative	Comparaison aux étalons du laboratoire à l'aide d'un photomètre photoélectrique				
11	1 à 10 cd 10 à 10 ⁴ cd	1,5 % 1,1 %	321M0512 : Etalonnage d'une lampe en intensité lumineuse				

OPTIQUE/Radiométrie-Photométrie/Sources en flux lumineux							
Référence portée générale	Domaine de mesure	Incertitude élargie	Méthode et moyens mis en œuvre				
11bis	1 à 20 lm 20 à 10 ⁴ lm	Incertitude relative 2,4 % 1,2 %	Comparaison aux étalons du laboratoire à l'aide d'un lumenmètre à sphère intégrante 321M0540 : Etalonner une lampe en flux lumineux				
	20 à 10⁴ lm	2,5 %	Comparaison aux étalons du laboratoire à l'aide d'un goniomètre et de corrections spectrales 321M0540 : Etalonner une lampe en flux lumineux				

	OPTIQUE/Radiométrie-Photométrie/Sources en éclairement et en intensité énergétique spectrique							
Référence portée générale	Domaine de mesure	Incertitudo	e élargie	Méthode et moyens mis en œuvre				
	10 ⁴ à 10 ⁹ Wm ⁻³ selon les longueurs d'onde	Longueurs d'onde	Incertitude relative (%)					
12	10³ à 10 ⁷ W × sr⁻¹m⁻¹ selon les longueurs d'onde	300 à 330 nm 330 à 350 nm 350 à 900 nm 900 à 1 100 nm 1 100 à 1 700 nm	5,2 4,5 2,6 3,3 4,3	Comparaison aux étalons avec le spectroradiomètre 321M0532 : Etalonner les sources en grandeurs spectroradiomètriques et colorimétriques				

OPTIQUE/Radiométrie-Photométrie/Sources en luminance énergétique spectrique						
Référence portée générale Domaine de mesure Incertitude élargie Méthode et moyens mis en œuvre						
12bis	2 x 10 ⁶ à 6 x10 ¹² W x m ⁻³ x sr ⁻¹ selon les longueurs d'onde	350 à 900 nm 900 à 1 100 nm 1 100 à 1 700 nm	3,0 3,6 4,5	Comparaison aux étalons avec le spectroradiomètre 321M0532 : Etalonner les sources en grandeurs spectroradiomètriques et colorimétriques		

OPTIQUE/Transmission et réflexion optique/ Position spectrale des extrema de transmission d'un filtre Référence portée générale Méthodes et moyens mis en œuvre Domaine de mesure Incertitude absolue Analyse spectrale au moyen d'un spectrophotomètre de référence 250 nm à 860 nm 0,25 nm 321M0850 : Etalonnage des positions spectrales de pics d'absorption de films de polystyrène 321M0523 : Perkin Elmer Lambda 900 : utilisation en transmission régulière 14 Analyse spectrale au moyen d'un spectromètre IR 800 cm⁻¹ à 3 500 cm⁻¹ 0,3 à 1,3 cm⁻¹ 321M0850 : Etalonnage des positions spectrales de pics d'absorption de films de polystyrène 321M0523 : Perkin Elmer Lambda 900 : utilisation en transmission régulière

OPTIQUE/ fluxmètre						
Référence portée générale	Domaine de mesure	Incertitude relative	Méthodes et moyens mis en œuvre			
	0,04 à 7W/cm²	4,9 % à 2,4 %	Méthode de référence dans un corps noir sous vide 321R0503 : Etalonnage sous vide - VBBC			
15	1 à 11 W/cm²	3,8 % à 1,7 %	Méthode directe devant un corps noir à pression atmosphérique 321R501 : Méthode directe d'étalonnage – SBBC			
	0,5 à 10 W/cm²	7,5 % à 5,5 %	Méthode par comparaison à un fluxmètre étalon 321R0502 : Méthode d'étalonnage par comparaison			

OPTIQUE/Radiométrie-Photométrie/Radiomètres						
Référence portée générale	Domaine de mesure	Incertitude élargie		Méthode et moyens mis en œuvre		
	Puissance	Longueurs d'onde	Incertitudes relatives			
16	100 μW à 500 μW 100 μW à 50 mW 50 mW à 500 mW 500 mW à 10 W 10 W à 30 W 30 W à 1 kW	L1* L2 L5 L1 L2* L3 L4 L5 L6 L2* L3 L4 L6 L2* L3 L6 L2*L3 L3*	1,3 % 1,4 % + 1,4 µW/P 1,8 % + 0,15 mW/P 1,7 % + 0,6 mW/P 1,7 % +11 mW/P 1,9 %	Comparaison à un radiomètre étalon 321L0418 : PRINCIPE D'ETALONNAGE DES RADIOMETRES LASER		
	Energie 10 mJ à 1 J (mono-coup et cadencé à fréquence fixe) 1 J à 100 J (mono-coup)	Longueurs d'onde L1 L3 L4*L5 L3* L4	Incertitudes relatives 1,7 % + 0,4 mJ/Q 2,2 % + 25 mJ/Q	Comparaison à un radiomètre étalon 321L0418 : PRINCIPE D'ETALONNAGE DES RADIOMETRES LASER		

Les incertitudes mentionnées sont relatives à la stabilité de la source laser repérée par un *.

Les raies suivantes sont disponibles :

L1 : Raie du laser HeNe 633 nm, (max 40 mW / 40 mJ, 3,39µm max 3 mW/3 mJ)

L2: Raie du laser YAG 532 nm (max 20W / 20J)

L3: 1060-1070 nm avec le laser YAG (max 50W / 50J) et laser Fibré (max 1 kW et 100 J)

L4: 1064 nm (max 700 mJ) 532 nm (max 500 mJ), 355 nm (max 100 mJ) avec les harmoniques du laser YAG (7 ns 20 Hz max)

L5 : 820 nm (max 2 mW / 2 mJ) et 1543 nm (max 20 mW / 20 mJ) avec une diode laser

L6 : Raies du laser CO2 9,4 μm à 10,6 μm (max 10 W / 10 J)

	OPTIQUE/Fibronique/Radiomètres pour fibres optiques						
Référence portée générale	Domaine de mesure	Incertitud	e élargie	Méthode et moyens mis en œuvre			
18	100 pW à 1mW	Longueurs d'onde 850 nm 1 300 nm 1 550 nm	Incertitudes relatives 1,6 1,7 1,8	Comparaison à un radiomètre étalon 321M0527 : Etalonnage en flux des radiomètres pour fibre optique			

OPTIQUE/Fibronique/Atténuateur pour fibres optiques							
Référence portée générale	Domaine de mesure	Incertitud	Méthode et moyens mis en œuvre				
	1 à 30 dB ou 0 à 3 en DO		Incertitudes relatives				
	1 a 30 ab 6a 6 a 5 cm b6	Longueurs d'onde	0,04 dB ou 0,004 en DO	Rapport des flux mesurés avec ur radiomètre étalon 321M0528 : Attenuateurs pour			
19	30 à 40 dB ou 3 à 4 en DO		0,06 dB ou 0,006 en DO				
	40 à 50 dB ou 4 à 5 en DO 1 550 nm	0,1 dB ou 0,01 en DO	fibre optique uni modale				
	50 à 60 dB ou 5 à 6 en DO		0,14 dB ou 0,014 en DO	_			

OPTIQUE / Transmission et réflexion optique / indice de réfraction						
Référence portée générale	Domaine de mesure	Incertitude élargie	Méthode et moyens mis en œuvre			
20	Indices n de 1 à 2 pour des prismes étalons	Incertitude absolue minimale $U = 15 \times 10^{-6}$	Minimum de déviation sur goniomètre à codeur angulaire 321M0536 : Mesure de l'indice de réfraction d'un prisme étalon par la méthode du minimum de déviation			
	Indices de 1,25 à 1,8 pour des lames de type « pour réfractomètres des lunetiers »	Incertitude absolue minimale 50 ×10 ⁻⁶	Incidence rasante sur un prisme à 90 321M0535 : Mesure de l'indice de réfraction d'un échantillon de verre pa la méthode de l'incidence rasante			
	Indices de 1,25 à 1,8 pour des liquides transparents	Incertitude absolue minimale 70 × 10 ⁻⁶	Incidence rasante sur un prisme à 90 321M0535 : Mesure de l'indice de réfraction d'un échantillon de verre pa la méthode de l'incidence rasante			

OPTIQUE/Radiométrie-Photométrie/Radiomètres						
Référence portée générale	Domaine de mesure	Incertitude élargie	Méthode et moyens mis en œuvre			
21	Eclairement normal de 200 à 1 200 W/m²	2,1 %	Eclairement en incidence normale par un simulateur solaire, selon ISO 9847:1992 « Énergie solaire. Étalonnage des pyranomètres de terrain par comparaison à un pyranomètre de référence » 321M0529 : Etalonnage en éclairement des pyranomètres			

OPTIQUE/ Etalonnage de Spectroradiomètres portables d'usage général						
Référence portée générale	Domaine de mesure	Incertitude élargie		Méthode et moyens mis en œuvre		
22	Longueur d'onde : 200 nm à 2 500 nm		0,1 nm	Mesure directe d'une lampe étalon 321M0541 : Etalonnage des spectroradiomètres à détecteurs matriciels		
	Eclairement énergétique spectrique :	200 nm- 220 nm	5 %			
		220 nm- 285 nm	3 %			
		285 nm- 300 nm	10 %			
		300 nm- 310 nm	6 %			
		310 nm- 340 nm	5 %			
		340 nm- 1 050 nm	2,5 %			
		1 050 nm-2 500 nm	3 %			

OPTIQUE/ Etalonnage de Spectroradiomètre pour mesure de lampes à spectre étendu dans l'UV					
Référence portée générale	Domaine de mesure	Incertitude élargie	Méthode et moyens mis en œuvre		
23	Eclairement énergétique dUVA (320 nm-400 nm)	7,1 %	Comparaison à un spectroradiomètre étalon avec des lampes UV spécifiques 321M0521 : Etalonnage d'un spectroradiomètre pour les cabines de bronzage		
	Eclairement énergétique dUVB (280 nm-320 nm)	15 %			

Les incertitudes élargies correspondent aux aptitudes en matière de mesures et d'étalonnages (CMC) du laboratoire pour une probabilité de couverture de 95 %.

[#] Accréditation rendue obligatoire dans le cadre réglementaire français précisé par le texte cité en référence dans le document Cofrac LAB INF 99 disponible sur www.cofrac.fr

Date de prise d'effet : 01/05/2024 Date de fin de validité : 31/07/2027

Cette annexe technique annule et remplace l'annexe technique 2-22 Rév. 10.

Comité Français d'Accréditation - 52, rue Jacques Hillairet 75012 PARIS

Tél.: +33 (0)1 44 68 82 20 - Fax: 33 (0)1 44 68 82 21 Siret: 397 879 487 00031 www.cofrac.fr