

ATTESTATION D'ACCREDITATION ACCREDITATION CERTIFICATE

N° 2-56 rév. 8

Le Comité Français d'Accréditation (Cofrac) atteste que : The French Committee for Accreditation (Cofrac) certifies that :

LABORATOIRE NATIONAL DE METROLOGIE ET D'ESSAIS

N° SIREN: 313320244

Satisfait aux exigences de la norme **NF EN ISO/IEC 17025 : 2017** Fulfils the requirements of the standard

et aux règles d'application du Cofrac pour les activités d'analyses/essais/étalonnages en : and Cofrac rules of application for the activities of testing/calibration in :

MATERIAUX DE REFERENCE / PHYSIQUE

REFERENCE MATERIALS / PHYSICS

réalisées par / performed by :

LNE - Laboratoires de Trappes 29, rue Roger Hennequin 78197 TRAPPES Cedex

et précisément décrites dans l'annexe technique jointe and precisely described in the attached technical appendix

L'accréditation suivant la norme internationale homologuée NF EN ISO/IEC 17025 est la preuve de la compétence technique du laboratoire dans un domaine d'activités clairement défini et du bon fonctionnement dans ce laboratoire d'un système de management adapté (cf. communiqué conjoint ISO-ILAC-IAF en vigueur disponible sur le site internet du Cofrac www.cofrac.fr)

Accreditation in accordance with the recognised international standard NF EN ISO/IEC 17025 demonstrates the technical competence of the laboratory for a defined scope and the proper operation in this laboratory of an appropriate management system (see current Joint ISO-ILAC-IAF Communiqué available on Cofrac web site www.cofrac.fr).

Le Cofrac est signataire de l'accord multilatéral d'EA pour l'accréditation, pour les activités objets de la présente attestation.

Cofrac is signatory of the European co-operation for Accreditation (EA) Multilateral Agreement for accreditation for the activities covered by this certificate.

Date de prise d'effet / granting date : 14/06/2025 Date de fin de validité / expiry date : 31/07/2027

Pour le Directeur Général et par délégation On behalf of the General Director

Le Responsable du Pôle Electricité – Rayonnements -Technologies de l'Information, Pole manager - Electricity-Radiation-Information Technologies,

Jérémie FREIBURGER

Pi, L'Adjointe au Directeur de Section

DocuSigned by:

Florence SIMONUTTI

1E72B235B6AD4A0...

La présente attestation n'est valide qu'accompagnée de l'annexe technique.

This certificate is only valid if associated with the technical appendix.

L'accréditation peut être suspendue, modifiée ou retirée à tout moment. Pour une utilisation appropriée, la portée de l'accréditation et sa validité doivent être vérifiées sur le site internet du Cofrac (www.cofrac.fr).

The accreditation can be suspended, modified or withdrawn at any time. For a proper use, the scope of accreditation and its validity should be checked on the Cofrac website (www.cofrac.fr).

Cette attestation annule et remplace l'attestation N° 2-56 Rév 7. This certificate cancels and replaces the certificate N° 2-56 Rév 7.

Seul le texte en français peut engager la responsabilité du Cofrac. The Cofrac's liability applies only to the french text.

Comité Français d'Accréditation - 52, rue Jacques Hillairet 75012 PARIS

Tél.: +33 (0)1 44 68 82 20 - Fax: 33 (0)1 44 68 82 21 Siret: 397 879 487 00031 www.cofrac.fr

ANNEXE TECHNIQUE à l'attestation N° 2-56 rév. 8

L'accréditation concerne les prestations réalisées par :

LNE - Laboratoires de Trappes 29, rue Roger Hennequin 78197 TRAPPES Cedex

Dans son unité:

- Pôle Photonique-Energétique (2-56)

Elle porte sur : voir pages suivantes

<u>Portée flexible FLEX3</u>: Le laboratoire est reconnu compétent, dans le domaine couvert par la portée générale, pour adopter toute méthode reconnue et pour développer ou mettre en œuvre tout autre méthode dont il aura assuré la validation, sans que cela affecte ses CMC. La liste exhaustive des méthodes proposées sous accréditation est tenue à jour par le laboratoire.

Portée générale

Matériaux de Référence – Physique – Conductivité Thermique					
N° Objet		Mesurande	Principe de la méthode		
1	Matériaux homogènes solides	Diffusivité thermique	Méthode « flash »		
2	Matériaux homogènes solides	Conductivité thermique	Méthode indirecte par calcul à partir des mesures de masse volumique, diffusivité thermique et capacité thermique massique		
3	Matériaux solides et liquides	Capacité thermique massique	Analyse calorimétrique différentielle		
4	Polymères	Temps d'induction à l'oxydation	Analyse calorimétrique différentielle		
	Métaux, polymères et matériaux organiques	_	Analyse calorimétrique différentielle		
5		Température et Enthalpie de fusion	Analyse calorimétrique différentielle avec matériaux de référence		
6	Polymères	Température de transition vitreuse	Analyse calorimétrique différentielle		
		remperature de transition vitreuse	Analyse thermomécanique		
7	Matériaux solides	Coefficient de diletation linéirue	Dilatométrie		
7		Coefficient de dilatation linéique	Analyse thermomécanique		
8	Calorimètre de Langavant	Capacité thermique et coefficient de déperdition thermique	Méthode par substitution électrique		

Matériaux de Référence – Physique – Conductivité Thermique					
N°	Objet Mesurande Principe d		Principe de la méthode		
	Matériaux solides	Emissivité directionnelle spectrale	Mesure du rapport entre la luminance spectrale de l'éprouvette et celle d'un corps noir		
9			Calcul à partir du facteur de réflexion directionnel hémisphérique spectral		
10	Matériaux solides	Facteur de réflexion directionnel hémisphérique spectral	Mesure du rapport entre le flux réfléchi et le flux incident		
11	Matériaux solides	Emissivité totale hémisphérique	Mesure de la densité de flux total rayonné par la surface de matériau		

Portée détaillée

Matériaux de Référence – Physique – Conductivité Thermique

N°	Objet	Mesurande	Etendue de mesure	Incertitude élargie	Référence de la méthode	Lieu de réalisation
1	Matériaux homogènes solides	Diffusivité thermique	10 ⁻⁷ m²/s à 10 ⁻⁴ m²/s Température 23 °C à 2 000 °C	3 %	NF EN ISO 22007-4 NF EN 1159-2 Méthode interne 322TC0522	En Laboratoire
2	Matériaux homogènes solides	Conductivité thermique	λ > 0,1 W/mK Température 23 °C à 2 000 °C	5 %	Méthode interne 322TC0524	En Laboratoire
3	Matériaux solides et liquides	Capacité thermique massique	Température 23 °C à 2 000 °C	4 %	Méthodes internes 322TR0502 322TG0521	En Laboratoire
4	Polymères	Temps d'induction à l'oxydation	Température 23 °C à 400 °C	2 min	NF EN 11357-6 Méthode interne 322TD0525	En Laboratoire
5	Métaux, polymères et matériaux organiques	Température de fusion	Température 23 °C à 400 °C	0,40 °C	ISO 11357-3 Méthode interne 322TD0523 ISO 11357-3 Méthode interne 322TG0522	_ En Laboratoire
		Enthalpie de fusion		2,5 %		
		Température de fusion	Température 23 °C à 800 °C	0,34 °C		
		Enthalpie de fusion		1,8 %		
6	Polymères		Température 50°C à 400°C	2 °C	Norme ISO 11357-2 Méthode interne 322TD0524	
		Température de transition vitreuse	Température - 50°C à 400°C	3 °C	Norme ISO 11359-2 Méthode interne 322TE0521	En Laboratoire

Matériaux de Référence – Physique – Conductivité Thermique

N°	Objet	Mesurande	Etendue de mesure	Incertitude élargie	Référence de la méthode	Lieu de réalisation
7	Matériaux solides	Coefficient de dilatation linéique	$\alpha > 10^{-6} \text{ K}^{-1}$		Méthode interne 322TB0522	En Laboratoire
			Température T ≤ 100 °C	10 ⁻⁶ K ⁻¹		
			α > 10 ⁻⁶ K ⁻¹			
			Température 100°C < T < 2000°C	0,3.10 ⁻⁶ K ⁻¹		
			α > 10 ⁻⁶ K ⁻¹ Température - 150 °C à 400 °C	5 %	Norme ISO 11359-2 Méthode interne 322TE0522	
8	Calorimètre de Langavant	Capacité thermique et coefficient de déperdition thermique	Coefficient de déperdition thermique, $\boldsymbol{\alpha}$	1 J/(h ⋅ °C)	NF EN 196-9 Méthode interne 322TF0521	En Laboratoire
			Capacité thermique moyenne, µ	70 J/°C		
			Direction normale			
9	Matériaux solides	Emissivité directionnelle spectrale	Emissivité spectrale 0,01 à 1	0,025 à 0,04	Méthode interne 322TH0502	_ En Laboratoire
			Température d'éprouvette 150°C à 800°C			
			Longueurs d'onde 2,5 µm à 13 µm			
			Direction 12°, 24° Emissivité spectrale 0 à 0,98 Température d'éprouvette 21°C à 25°C Longueurs d'onde 0,8 μm à 14,1 μm	0,025 à 0,040ff	Méthode interne 322TH0504	

Matériaux de Référence – Physique – Conductivité Thermique							
N°	Objet	Mesurande	Etendue de mesure	Incertitude élargie	Référence de la méthode	Lieu de réalisation	
10	Matériaux solides	Facteur de réflexion directionnel hémisphérique spectral	Facteur de réflexion 0,02 à 1	0,025 à 0,040	Méthode interne 322TH0504	En Laboratoire	
			Direction 12°, 24°				
			Température d'éprouvette 21 °C à 25 °C				
			Longueurs d'onde 0,8 µm à 14,1 µm				
11	Matériaux solides	Emissivité totale hémisphérique	Température du matériau -20 °C à 200 °C	0,010 à 0,030	Méthode interne 322TH0503	En Laboratoire	

Les incertitudes élargies correspondent aux aptitudes en matière de mesures et d'étalonnages (CMC) du laboratoire pour une probabilité de couverture de 95%.

[#] Accréditation rendue obligatoire dans le cadre réglementaire français précisé par le texte cité en référence dans le document Cofrac LAB INF 99 disponible sur www.cofrac.fr

Date de prise d'effet : 14/06/2025 Date de fin de validité : 31/07/2027

Cette annexe technique annule et remplace l'annexe technique 2-56 Rév. 7.

Comité Français d'Accréditation - 52, rue Jacques Hillairet 75012 PARIS

Tél.: +33 (0)1 44 68 82 20 - Fax: 33 (0)1 44 68 82 21 Siret: 397 879 487 00031 www.cofrac.fr