

ATTESTATION D'ACCREDITATION

ACCREDITATION CERTIFICATE

N° 2-5656 rév. 12

Le Comité Français d'Accréditation (Cofrac) atteste que : The French Committee for Accreditation (Cofrac) certifies that :

EMITECH

N° SIREN: 344545645

Satisfait aux exigences de la norme **NF EN ISO/IEC 17025 : 2017** Fulfils the requirements of the standard

et aux règles d'application du Cofrac pour les activités d'analyses/essais/étalonnages en : and Cofrac rules of application for the activities of testing/calibration in :

ELECTRICITE HAUTE FREQUENCE /

HIGH FREQUENCE ELECTRICITY

ELECTRICITE COURANT CONTINU ET BASSE FREQUÊNCE / COURANT CONTINU - COURANT ALTERNATIF

DIRECT CURRENT AND LOW FREQUENCY ELECTRICITY / DIRECT CURRENT - ALTERNATIVE CURRENT

réalisées par / performed by :

EMITECH - MONTIGNY
30/32 RUE DES 3 PEUPLES
78180 MONTIGNY-LE- BRETONNEUX

et précisément décrites dans l'annexe technique jointe and precisely described in the attached technical appendix

L'accréditation suivant la norme internationale homologuée NF EN ISO/IEC 17025 est la preuve de la compétence technique du laboratoire dans un domaine d'activités clairement défini et du bon fonctionnement dans ce laboratoire d'un système de management adapté (cf. communiqué conjoint ISO-ILAC-IAF en vigueur disponible sur le site internet du Cofrac www.cofrac.fr)

Accreditation in accordance with the recognised international standard NF EN ISO/IEC 17025 demonstrates the technical competence of the laboratory for a defined scope and the proper operation in this laboratory of an appropriate management system (see current Joint ISO-ILAC-IAF Communiqué available on Cofrac web site www.cofrac.fr).

Le Cofrac est signataire de l'accord multilatéral d'EA pour l'accréditation, pour les activités objets de la présente attestation.

Cofrac is signatory of the European co-operation for Accreditation (EA) Multilateral Agreement for accreditation for the activities covered by this certificate.

Date de prise d'effet / granting date : 26/11/2024
Date de fin de validité / expiry date : 30/04/2026

Pour le Directeur Général et par délégation On behalf of the General Director

Le Responsable du Pôle Physique-Mécanique, Pole manager - Physics-Mechanical,

Stéphane KI (HUKD)
694908483BDE4E5...

La présente attestation n'est valide qu'accompagnée de l'annexe technique. This certificate is only valid if associated with the technical appendix.

L'accréditation peut être suspendue, modifiée ou retirée à tout moment. Pour une utilisation appropriée, la portée de l'accréditation et sa validité doivent être vérifiées sur le site internet du Cofrac (www.cofrac.fr).

The accreditation can be suspended, modified or withdrawn at any time. For a proper use, the scope of accreditation and its validity should be checked on the Cofrac website (www.cofrac.fr).

Cette attestation annule et remplace l'attestation N° 2-5656 Rév 11. This certificate cancels and replaces the certificate N° 2-5656 Rév 11.

Seul le texte en français peut engager la responsabilité du Cofrac. The Cofrac's liability applies only to the french text.

Comité Français d'Accréditation - 52, rue Jacques Hillairet 75012 PARIS

Tél.: +33 (0)1 44 68 82 20 - Fax: 33 (0)1 44 68 82 21 Siret: 397 879 487 00031 www.cofrac.fr

ANNEXE TECHNIQUE

à l'attestation N° 2-5656 rév. 12

L'accréditation concerne les prestations réalisées par :

EMITECH - MONTIGNY
30/32 RUE DES 3 PEUPLES
78180 MONTIGNY-LE- BRETONNEUX

Dans son unité:

- Laboratoire d'étalonnage en électricité-magnétisme

ELECTRICITE - FREQUENCE / Décharges ElectroStatiques

ELECTRICITE HAUTE FREQUENCE

/ Paramètres S

/ Courant alternatif / Impédance

/ Gain d'antenne

/ Facteur d'antenne

/ Facteur de réflexion

/ Impédance

/ Champ Electromagnétique

Pour tous les étalonnages concernant cette accréditation :

(*) Le laboratoire peut employer d'autres méthodes dès lors que les compétences qu'elles impliquent sont présentes dans sa portée d'accréditation et ce pour la même grandeur et la même valeur ou étendue de mesure. Cependant, le laboratoire ne pourra mentionner des incertitudes meilleures que celles figurant dans sa portée d'accréditation (FLEX2).

La liste des méthodes équivalentes employées est tenue à jour par le laboratoire

<u>Unité technique</u> : Laboratoire d'étalonnage en électricité-magnétisme

ELECTRICITE - FREQUENCE / Décharges ElectroStatiques

Objet	Caractéristique mesurée ou recherchée	Domaine d'application	Etendue de mesure	Incertitude élargie	Principe de la méthode	Principaux moyens utilisés	Référence de la méthode (*)	Commentaire
	Différence de potentiel	Tension de sortie en circuit ouvert en courant continu (U)	1 kV à 30 kV	0,8 %	Mesure directe de la tension en sortie du générateur en mode décharge dans l'air	Ultimètre associé à un diviseur haute tension	Procédure Emitech n°PRTFIC000MET00015 EN 61000-4-2 ISO 10605	/
		Amplitude de l'intensité de la 1ère crête de courant de décharge (lp)	3 A à 40 A (Niveau d'essai de 2 kV à 10 kV)	7,0 %	70L		Procédure Emitech n°PRTFIC000MET00015	
Générateurs de Décharges Electrostati-		Amplitude de l'intensité I_{t1} et I_{t2} aux points t_1 et t_2 de la décroissance de l'impulsion $t_1 = 30$ ns $t_2 = 60$ ns	1 A à 40 A (Niveau d'essai de 2 kV à 10 kV)	7,5 % 7,5 %	Mesure de tension sur l'impulsion	Cible de courant-	EN 61000-4-2 ISO 10605	Générateur équipé de la capacité de
ques (DES)	Intensité de courant électrique	Amplitude de l'intensité de la 1 ^{ère} crête de courant de décharge (I _p)	40 A à 80 A (Niveau d'essai de 10 kV à 15 kV)	7,5 %	enregistrée par décharge sur cible 2Ω ; Générateur en mode décharge au contact	atténuateur- câble Atténuateur Oscilloscope	Procédure Emitech n°PRTFIC000MET00015 EN 61000-4-2 ISO 10605	stockage et de la résistance de décharge : CR = 150 pF / 330 Ω
		Amplitude de l'intensité I_{t1} et I_{t2} aux points t_1 et t_2 de la décroissance de l'impulsion $t_1 = 30$ ns $t_2 = 60$ ns	7 A à 80 A (Niveau d'essai de 10 kV à 15 kV)	8,0 % 8,0 %			Procédure Emitech n°PRTFIC000MET00015 EN 61000-4-2 ISO 10605	

ELECTRICITE - FREQUENCE / Décharges ElectroStatiques (suite)

Objet	Caractéristique mesurée ou recherchée	Domaine d'application	Etendue de mesure	Incertitude élargie	Principe de la méthode	Principaux moyens utilisés	Référence de la méthode (*)	Commentaire
			0,5 ns à 0,7 ns	0,08 ns			Procédure Emitech n°PRTFIC000MET00015	
	Durées		0,7 ns à 1 ns	0,09 ns			EN 61000-4-2	Niveau d'essai de 2 kV à 10 kV
	caractéristiques de signaux	Temps de montée /	1 ns à 1,2 ns	0,11 ns	5		ISO 10605	
	impulsionnels (intervalles de	descente	0,5 ns à 0,7 ns	0,08 ns	13/1		Procédure Emitech n°PRTFIC000MET00015	Niveau d'essai de
	temps)		0,7 ns à 1 ns	0,10 ns	~ ~		EN 61000-4-2	10 kV à 15 kV
			1 ns à 1,2 ns	0,11 ns	Mesure de tension		ISO 10605	
Générateurs de Décharges		Amplitude de l'intensité de la 1ère crête de courant de	3 A à 40 A (Niveau d'essai de	20	sur l'impulsion enregistrée par décharge sur cible	Cible de courant- atténuateur-	Procédure Emitech n°PRTFIC000MET00015	
Electrostatiques (DES)		décharge (Ip)	2 kV à 10 kV)	7,0 %	2Ω ; Générateur en mode	câble Oscilloscope	ISO 10605	CR = 330 pF /
	Intensité de courant électrique	Amplitude de l'intensité It1 et It2 aux points t1 et t2 de la décroissance de l'impulsion t1 = 65 ns t2 = 130 ns t1 = 180 ns t2 = 360 ns t1 = 400 ns t2 = 800 ns	0,15 A à 40 A (Niveau d'essai de 2 kV à 10 kV)	7,5 % 7,5 % 10,0 % 10,0 % 10,0 % 10,0 %	décharge au contact		Procédure Emitech n°PRTFIC000MET00015 ISO 10605	330 Ω $CR = 150 \text{ pF} / 2000 \Omega$ $CR = 330 \text{ pF} / 2000 \Omega$

ELECTRICITE - FREQUENCE / Décharges ElectroStatiques (suite)

Objet	Caractéristique mesurée ou recherchée	Domaine d'application	Etendue de mesure	Incertitude élargie	Principe de la méthode	Principaux moyens utilisés	Référence de la méthode (*)	Commentaire
		Amplitude de l'intensité de la 1ère crête de courant de décharge (Ip)	40 A à 80 A (Niveau d'essai de 10 kV à 15 kV)	7,5 %	18/16	8	Procédure Emitech n°PRTFIC000MET00015 ISO 10605	OD . 000 . F /
Générateurs de Décharges Electrostatiques (DES)	Intensité de courant électrique	Amplitude de l'intensité It1 et It2 aux points t1 et t2 de la décroissance de l'impulsion t1 = 65 ns t2 = 130 ns t1 = 180 ns t2 = 360 ns t1 = 400 ns t2 = 800 ns	0,75 A à 80 A (Niveau d'essai de 10 kV à 15 kV)	8,0 %	Mesure de tension sur l'impulsion enregistrée par décharge sur cible 2 Ω ; Générateur en mode décharge au contact	Cible de courant- atténuateur- câble Atténuateur Oscilloscope	Procédure Emitech n°PRTFIC000MET00015 ISO 10605	CR = 330 pF / 330 Ω CR = 150 pF / 2 000 Ω CR = 330 pF / 2 000 Ω

Objet	Caractéristique mesurée ou recherchée	Domaine d'application	Etendue de mesure	Incertitude élargie				Principe de la méthode	movane	Référence de la méthode (*)
Câbles coaxiaux, affaiblisseurs, filtres, adaptateurs d'impédance, réseaux passifs, coupleurs, splitters, répartiteurs, Pinces d'injection et mesure courant RF (3)		Connecteurs type N de 9 kHz à 18 GHz	0 – 40 dB ⁽¹⁾ 9 kHz –100 kHz 100 kHz – 10 MHz 10 MHz – 1 GHz 1 GHz – 6 GHz 6 GHz – 8 GHz 8 GHz – 12 GHz 12 GHz – 18 GHz 40 – 50 dB ⁽¹⁾ 9 kHz – 100 kHz 100 kHz – 10 MHz 10 MHz – 1 GHz 1 GHz – 6 GHz 6 GHz – 8 GHz 8 GHz – 12 GHz	0,09 dB 0,07 dB 0,07 dB 0,09 dB 0,08 dB 0,10 dB 0,13 dB	0,07 dB 0,08 dB 0,10 dB 0,09 dB 0,11 dB 0,15 dB 0,11 dB 0,08 dB 0,08 dB 0,10 dB 0,10 dB	ρ ≤ 0,5 0,10 dB 0,08 dB 0,08 dB 0,12 dB 0,11 dB 0,12 dB 0,16 dB 0,16 dB 0,18 dB 0,12 dB 0,12 dB 0,12 dB 0,12 dB 0,12 dB	ρ ≤ 1,0 0,13 dB 0,09 dB 0,10 dB 0,18 dB 0,18 dB 0,17 dB 0,24 dB 0,14 dB 0,09 dB 0,10 dB 0,10 dB 0,10 dB 0,10 dB 0,10 dB	Méthode -hétérodyne	Analyseur de réseau vectoriel	Procédure Emitech PRTFIC000MET00020
			12 GHz - 18 GHz	0,13 dB	0,15 dB	0,16 dB	0,24 dB			

⁽¹⁾ Affaiblissement de l'objet sous test ρ Module du facteur de réflexion (3) Les incertitudes des pinces se déduisent de mesures de paramètres S21 sur Jig adapté.

Objet	Caractéristique mesurée ou recherchée	Domaine d'application	Etendue de mesure		Incertitude élargie				Principaux moyens utilisés	Référence de la méthode (*)
				ρ ≤ 0,1	ρ ≤ 0,333	ρ ≤ 0,5	ρ ≤ 1,0			
Câbles			50 – 60 dB ⁽¹⁾			•				
coaxiaux,			9 kHz – 100 kHz	0,17 dB	0,17 dB	0,17 dB	0,19 dB			
affaiblisseurs, filtres,			100 kHz – 10 MHz	0,14 dB	0,14 dB	0,14 dB	0,15 dB			
adaptateurs			10 MHz – 1 GHz	0,09 dB	0,09 dB	0,09 dB	0,11 dB			
d'impédance,			1 GHz – 6 GHz	0,09 dB	0,10 dB	0,12 dB	0,19 dB		Analyseur	
réseaux	Paramètres S	Connecteurs type N	6 GHz – 8 GHz	0,10 dB	0,11 dB	0,13 dB	0,19 dB		de réseau	Procédure
passifs,	Modules	de 9 kHz à	8 GHz – 12 GHz	0,11 dB	0,11 dB	0,12 dB	0,17 dB	Méthode	vectoriel	Emitech
coupleurs,	S21 et S12	18 GHz	12 GHz – 18 GHz	0,13 dB	0,15 dB	0,17 dB	0,24 dB	hétérodyne	associé à	PRTFIC000MET00020
splitters,			$60 - 70 \text{ dB}^{(1)}$		10				des kits de	
répartiteurs,			9 kHz – 100 kHz	0,23 dB	0,23 dB	0,23 dB	0,24 dB		calibrage	
Pinces			100 kHz – 10 MHz	0,24 dB	0,24 dB	0,24 dB	0,24 dB			
d'injection et			10 MHz – 1 GHz	0,15 dB	0,15 dB	0,15 dB	0,16 dB			
mesure courant			1 GHz – 6 GHz	0,16 dB	0,17 dB	0,18 dB	0,22 dB			
RF ⁽³⁾			6 GHz – 8 GHz	0,11 dB	0,11 dB	0,12 dB	0,19 dB			
			8 GHz – 12 GHz	0,15 dB	0,16 dB	0,17 dB	0,20 dB			
			12 GHz – 18 GHz	0,16 dB	0,17 dB	0,19 dB	0,26 dB			

⁽¹⁾ Affaiblissement de l'objet sous test ρ Module du facteur de réflexion

⁽³⁾ Les incertitudes des pinces se déduisent de mesures de paramètres S21 sur Jig adapté.

Objet	Caractéristique mesurée ou recherchée	Domaine d'application	Etendue de mesure		Incerti	tude élargie		Principe de la méthode	movens	Référence de la méthode (*)
Câbles coaxiaux, affaiblisseurs, filtres, adaptateurs d'impédance, réseaux passifs, coupleurs, splitters, répartiteurs,	mesurée ou recherchée		70 – 80 dB ⁽¹⁾ 9 kHz – 100 kHz 100 kHz – 10 MHz 10 MHz – 1 GHz 1 GHz – 6 GHz 6 GHz – 8 GHz 8 GHz – 12 GHz 12 GHz – 18 GHz	ρ ≤ 0,1 0,70 dB 0,73 dB 0,36 dB 0,20 dB 0,23 dB 0,37 dB 0,43 dB	ρ ≤ 0,333 0,70 dB 0,73 dB 0,36 dB 0,20 dB 0,23 dB 0,37 dB 0,43 dB	p ≤ 0,5 0,70 dB 0,73 dB 0,36 dB 0,21 dB 0,23 dB 0,37 dB 0,44 dB 2,2 dB 2,4 dB 1,3 dB 0,8 dB	ρ ≤ 1,0 0,70 dB 0,73 dB 0,36 dB 0,23 dB 0,25 dB 0,38 dB 0,46 dB	_	moyens utilisés Analyseur de réseau vectoriel associé à	méthode (*)
Pinces d'injection et mesure courant RF ⁽³⁾			90 – 100 dB 9 kHz – 100 kHz 100 kHz – 100 MHz 100 MHz – 1 GHz 1 GHz – 8 GHz 8 GHz – 18 GHZ	<u>, </u>	1	7,1 dB 0,9 dB 3,9 dB 2,7 dB 4,2 dB				

⁽¹⁾ Affaiblissement de l'objet sous test ρ Module du facteur de réflexion

⁽³⁾ Les incertitudes des pinces se déduisent de mesures de paramètres S21 sur Jig adapté.

Objet	Caractéristique mesurée ou recherchée	Domaine d'application	Etendue de mesure		Incertitu	de élargie		Principe de la méthode	Principaux moyens utilisés	Référence de la méthode (*)
Câbles coaxiaux, affaiblisseurs, filtres, adaptateurs d'impédance, réseaux passifs, coupleurs, splitters, répartiteurs	recherchée Paramètres S	Connecteurs type N de 9 kHz à 18 GHz	0 – 3 dB ⁽¹⁾ 9 kHz – 100 kHz 100 kHz – 10 MHz 10 MHz – 1 GHz 1 GHz – 6 GHZ 6 GHz – 8 GHz 8 GHz – 12 GHz 12 GHz – 18 GHz 3 à 100 dB ⁽¹⁾ 9 kHz – 100 kHz 100 kHz – 10 MHz 10 MHz – 1 GHz 1 GHz – 6 GHz	ρ ≤ 0,1 0,009 0,008 0,008 0,015 0,019 0,018 0,026 0,009 0,008 0,008 0,015	ρ ≤ 0,333 0,011 0,008 0,009 0,016 0,020 0,019 0,028 0,010 0,008 0,009 0,016	ρ ≤ 0,5 0,012 0,009 0,011 0,019 0,023 0,021 0,030 0,012 0,009 0,010 0,019	ρ ≤ 1,0 0,020 0,014 0,017 0,033 0,036 0,030 0,045 0,019 0,014 0,017 0,032	Méthode hétérodyne	Analyseur de réseau vectoriel	Procédure Emitech
			6 GHz – 8 GHz 8 GHz – 12 GHz 12 GHz – 18 GHz	0,019 0,018 0,026	0,020 0,019 0,027	0,022 0,020 0,030	0,035 0,030 0,044			

⁽¹⁾ Affaiblissement de l'objet sous test

ρ Module du facteur de réflexion

Objet	Caractéristique mesurée ou recherchée	Domaine d'application	Etendue de mesure	Incertitude élargie				Principe de la méthode	Principaux moyens utilisés	Référence de la méthode (*)
				ρ ≤ 0,1	ρ ≤ 0,333	ρ ≤ 0,5	ρ ≤ 1,0			
			9 kHz – 100 kHz	0,009	0,010	0,012	0,018		Analyseur de	
Charges 50 Ω,	5 11 0		100 kHz – 10 MHz	0,008	0,008	0,009	0,013		réseau	5 (1 5 %)
entrées de	Paramètres S	Connecteurs	10 MHz – 1 GHz	0,008	0,009	0,010	0,016	Méthode	vectoriel	Procédure Emitech
dispositifs de	Modules	type N de 9 kHz	1 GHz – 6 GHz	0,014	0,016	0,019	0,032	hétérodyne	associé à des	DDTEIC000MET00000
mesure dont	S11 et S22	à 18 GHz	6 GHz – 8 GHz	0,019	0,020	0,022	0,035		kits de	PRTFIC000MET00020
préamplificateur			8 GHz – 12 GHz	0,018	0,019	0,020	0,029		calibrage	
			12 GHz – 18 GHz	0,026	0,027	0,030	0,043			

⁽¹⁾ Affaiblissement de l'objet sous test

ρ Module du facteur de réflexion

Objet	Caractéristique mesurée ou recherchée	Domaine d'application	Etendue de mesure	Incertitude élargie				Principe de la méthode	Principaux moyens utilisés	Référence de la méthode (*)
			0 dB – 40 dB ⁽²⁾	ρ ≤ 0,1	ρ ≤ 0,333	ρ ≤ 0,5	ρ ≤ 1,0	_		
Préamplificateur	Paramètres S Module S21	Connecteurs type N de 9 kHz à 18 GHz	9 kHz – 100 kHz 100 kHz – 10 MHz 10 MHz – 1 GHz 1 GHz – 6 GHz 6 GHz – 8 GHz 8 GHz – 12 GHz 12 GHz – 18 GHz 40 dB – 50 dB ⁽²⁾	0,13 dB 0,10 dB 0,10 dB 0,13 dB 0,11 dB 0,14 dB 0,18 dB	0,13 dB 0,10 dB 0,10 dB 0,14 dB 0,12 dB 0,15 dB 0,19 dB	0,14 dB 0,11 dB 0,11 dB 0,15 dB 0,14 dB 0,16 dB 0,21 dB	0,16 dB 0,11 dB 0,13 dB 0,20 dB 0,20 dB 0,19 dB 0,27 dB	Méthode hétérodyne	Analyseur de réseau vectoriel associé à des kits de calibrage	Procédure Emitech PRTFIC000MET00021
			9 kHz – 100 kHz 100 kHz – 10 MHz 10 MHz – 1 GHz 1 GHz – 6 GHz	0,15 dB 0,13 dB 0,11 dB 0,13 dB	0,15 dB 0,13 dB 0,11 dB 0,14 dB	0,16 dB 0,13 dB 0,11 dB 0,15 dB	0,17 dB 0,14 dB 0,13 dB 0,20 dB			
			6 GHz – 8 GHz 8 GHz – 12 GHz 12 GHz – 18 GHz	0,13 dB 0,15 dB 0,18 dB	0,14 dB 0,14 dB 0,15 dB 0,19 dB	0,15 dB 0,15 dB 0,16 dB 0,21 dB	0,20 dB 0,21 dB 0,19 dB 0,27 dB			

⁽²⁾ Gain du préamplificateur sous test ρ Module du facteur de réflexion

Objet	Caractéristique mesurée ou recherchée	Domaine d'application	Etendue de mesure		Incertitue	de élargie		Principe de la méthode	Principaux moyens utilisés	Référence de la méthode (*)
Préamplificateur	Paramètres S Module S21	Connecteurs type N de 9 kHz à 18 GHz	50 dB – 60 dB ⁽²⁾ 9 kHz – 100 kHz 100 kHz – 10 MHz 10 MHz – 1 GHz 1 GHz – 6 GHz 6 GHz – 8 GHz 8 GHz – 12 GHz 12 GHz – 18 GHz	ρ ≤ 0,1 0,29 dB 0,29 dB 0,17 dB 0,13 dB 0,14 dB 0,15 dB 0,19 dB	0,29 dB 0,29 dB 0,29 dB 0,17 dB 0,14 dB 0,15 dB 0,16 dB 0,20 dB	ρ ≤ 0,5 0,29 dB 0,29 dB 0,17 dB 0,15 dB 0,16 dB 0,17 dB 0,22 dB	ρ ≤ 1,0 0,29 dB 0,29 dB 0,18 dB 0,21 dB 0,21 dB 0,20 dB 0,28 dB	Méthode hétérodyne	Analyseur de réseau vectoriel associé à des kits de calibrage	Procédure Emitech PRTFIC000MET00021
Antenne biconique, bilog	Symétrie de l'antenne (S12)	Distance 10 m 20 MHz à 300 MHz	± 20 dB	Sil	0,38	5 dB		Méthode à 2 antennes avec mesure relative	Site champ libre avec plan de masse VNA Kit de calibrage Antenne	PRT FIC 000 MET 00038 CISPR 16-1-6 CISPR 16-1-4 ANSI C63.5

⁽²⁾ Gain du préamplificateur sous test p Module du facteur de réflexion

ELECTRICITE HAUTE FREQUENCE / Impédance

Objet	Caractéristique mesurée ou recherchée	Domaine d'application	Etendue de mesure	Incertitude élargie	Principe de la méthode (*)	Principaux moyens utilisés	Référence de la méthode
		De 9 kHz à 10 MHz	$Z \le 10 \Omega$ $10 \Omega < Z \le 40 \Omega$ $40 \Omega < Z \le 60 \Omega$ $60 \Omega < Z \le 80 \Omega$ $80 \Omega < Z \le 200 \Omega$	0,75 Ω 1,2 Ω 1,7 Ω 2,5 Ω 0,07 × Z - 3 Ω	\ @		
Réseau de stabilisation	Module de	De 10 MHz à 30 MHz	$Z < 10 \Omega$ $10 \Omega < Z \le 40 \Omega$ $40 \Omega < Z \le 60 \Omega$ $60 \Omega < Z \le 80 \Omega$ $80 \Omega < Z \le 200 \Omega$	1,3 Ω 1,6 Ω 2,1 Ω 3,0 Ω 0,09 × Z - 4 Ω	Méthode	Analyseur de réseau	Procédure Emitech
d'impédance de ligne (RSIL)	l'impédance	De 30 MHz à 100 MHz	$Z \le 40 \Omega$ $40 \Omega < Z \le 60 \Omega$ $40 \Omega < Z \le 80 \Omega$ $80 \Omega < Z \le 200 \Omega$	3,5 Ω 4,0 Ω 4,5 Ω 0,08 × Z - 2 Ω	hétérodyne	vectoriel associé à des kits de calibrage	PRTFIC000MET00023
		De 100 MHz à 200 MHz	$Z \le 40 \Omega$ $40 \Omega < Z \le 80 \Omega$ $80 \Omega < Z \le 200 \Omega$	6,0 Ω 6,5 Ω 0,07 × Z + 1 Ω			
		De 200 MHz à 300 MHz	$Z \le 80 \Omega$ $80 \Omega \le Z \le 200 \Omega$	10.0Ω $0.05 \times Z + 6 \Omega$			
		De 300 MHz à 400 MHz	Ž ≤ 200 Ω	18,0 Ω			

RSIL/RSI FACTEUR DE DIVISION DE TENSION ET FACTEUR DE DECOUPLAGE :

Les incertitudes se déduisent de celles des paramètres S12 et S21 de la présente portée. Elles sont fonction de la valeur des affaiblissements mesurés dans le domaine fréquentiel Les incertitudes élargies correspondent aux aptitudes en matière de mesures et d'étalonnages (CMC) du laboratoire pour une probabilité de couverture de 95%.

ELECTRICITE HAUTE FREQUENCE / Impédance (suite)

Objet	Caractéristique mesurée ou recherchée	Domaine d'application	Etendue de mesure	Incertitude élargie	Principe de la méthode (*)	Principaux moyens utilisés	Référence de la méthode
			0,5 Ω < Z ≤ 1 Ω	35,0 °			
			$1 \Omega < Z \le 2 \Omega$	18,0 °			
			$2 \Omega < Z \le 4 \Omega$	9,0 °			
			$4 \Omega < Z \le 5 \Omega$	5,0 °	\Q .		
		De 9 kHz à 10 MHz	$5 \Omega < Z \le 6 \Omega$	4,0 °	. 20		
		De 9 kmz a 10 lvimz	$6 \Omega < Z \leq 9 \Omega$	3,5 °	110.		
			9 Ω < Z ≤ 10 Ω	3,0 °	X //,		
			$10 \Omega < Z \le 20 \Omega$	2,5 °	O'		
			$20 \Omega < Z \le 100 \Omega$	1,5 °			
			$100 \Omega < Z \le 200 \Omega$	2,0 °			
			0,5 Ω < Z ≤ 1 Ω	45,0°]		
			1 Ω < Z ≤ 2 Ω	25,0°			
Réseau de			2 Ω < Z ≤ 4 Ω	12,0 °		Analyseur de	
stabilisation	Phase de		$4 \Omega < Z \le 5 \Omega$	6,0 °	Méthode	réseau vectoriel	Procédure Emitech
d'impédance de	l'impédance	De 10 MHz à 30 MHz	5 Ω < Z ≤ 6 Ω	5,0 °	hétérodyne	associé à des kits	PRTFIC000MET00023
ligne (RSIL)		De 10 Mil 12 a 30 Mil 12	6 Ω < Z ≤ 9 Ω	4,5 °		de calibrage	
			9 Ω < Z ≤ 10 Ω	3,5 °			
			$10 \Omega < Z \le 20 \Omega$	3,0 °			
			20 Ω < Z ≤ 100 Ω	2,5 °			
			$100 \Omega < Z ≤ 200 \Omega$	3,0 °			
			$0.5 \Omega < Z \le 1 \Omega$	45,0 °			
			$1 \Omega < Z \le 2 \Omega$	25,0 °			
			$2 \Omega < Z \le 4 \Omega$	13,0 °			
		De 30 MHz à 100 MHz	$4 \Omega < Z \le 5 \Omega$	9,0 °			
		De 30 IVII IZ a 100 IVII IZ	$5 \Omega < Z \le 6 \Omega$	8,0 °			
			$6 \Omega < Z \leq 9 \Omega$	7,5 °			
			9 Ω < Z ≤ 20 Ω	7,0 °			
			$20 \Omega < Z \le 200 \Omega$	6,5 °			

RSIL/RSI FACTEUR DE DIVISION DE TENSION ET FACTEUR DE DECOUPLAGE :

Les incertitudes se déduisent de celles des paramètres S12 et S21 de la présente portée. Elles sont fonction de la valeur des affaiblissements mesurés dans le domaine fréquentiel Les incertitudes élargies correspondent aux aptitudes en matière de mesures et d'étalonnages (CMC) du laboratoire pour une probabilité de couverture de 95%.

ELECTRICITE HAUTE FREQUENCE / Impédance (suite)

Objet	Caractéristique mesurée ou recherchée	Domaine d'application	Etendue de mesure	Incertitude élargie	Principe de la méthode (*)	Principaux moyens utilisés	Référence de la méthode
			0,5 Ω < Z ≤ 1 Ω	45,0 °			
Réseau de			$1 \Omega < Z \leq 2 \Omega$	25,0 °			
stabilisation	Phase de		$2 \Omega < Z \le 4 \Omega$	15,0 °		Analyseur de réseau vectoriel associé à des kits de calibrage	Procédure Emitech PRTFIC000MET00023
d'impédance de	l'impédance	De 100 MHz à 400 MHz	$4 \Omega < Z \leq 5 \Omega$	11,0°	Méthode hétérodyne		
ligne (RSIL)			$5 \Omega < Z \le 6 \Omega$	10,0 °			
ligite (NSIL)			$6 \Omega < Z \leq 9 \Omega$	9,5 °			
			9 Ω < Z ≤ 200 Ω	9,0 °			
		De 150 kHz à 30 MHz		$0,000 \ 2 \times Z ^2 + 0,5 \ \Omega$			
RCD	Module de l'impédance	De 30 MHz à 80 MHz	50 Ω < Z ≤ 300 Ω	$0,000 \ 18 \times Z ^2 + 1 \ \Omega$			
Dágagu da		De 80 MHz à 230 MHz	50 12 < Z \sigma 500 12	$0,000\ 15 \times Z ^2 + 4 \Omega$			
Réseau de stabilisation d'impédance (RSI)		De 230 MHz à 300 MHz		$0,000 \ 13 \times Z ^2 + 6,5 \ \Omega$			
	Phase de l'impédance	De 150 kHz à 30 MHz		0,005 × Z + 2 °			
		De 30 MHz à 80 MHz	De -90 ° à 90 °	0,005 × Z + 4,5 °			
. ,		De 80 MHz à 300 MHz		9,00°			

RSIL/RSI FACTEUR DE DIVISION DE TENSION ET FACTEUR DE DECOUPLAGE :

Les incertitudes se déduisent de celles des paramètres S12 et S21 de la présente portée. Elles sont fonction de la valeur des affaiblissements mesurés dans le domaine fréquentiel Les incertitudes élargies correspondent aux aptitudes en matière de mesures et d'étalonnages (CMC) du laboratoire pour une probabilité de couverture de 95%

ELECTRICITE HAUTE FREQUENCE / Facteur d'antenne

Objet	Caractéristique mesurée ou recherchée	Domaine d'application	Etendue de mesure		Incertitude élargie	Principe de la méthode (*)	Principaux moyens utilisés	Référence de la méthode
		Distance 3 m 1 GHz à 18 GHz	Fa ≤ 60 dB/m	1 GHz à 5 GHz	1,3 dB			PRT FIC 000 MET 00075 CISPR 16-1-6 ANSI C63.5 PRT FIC 000 MET 00076 CISPR 16-1-6 SAE ARP958
				5 GHz à 15 GHz	1,1 dB			
				15 GHz à 18 GHz	1,2 dB			
Antenne cornet	Facteur d'antenne	Distance 1m 1 GHz à 18 GHz	Fa ≤ 60 dB/m	1 GHz à 5 GHz	1,2 dB	Méthode des 3 antennes	Antennes, chambre anéchoïque (FAR), analyseur de réseau vectoriel	CISPR 16-1-6
				5 GHz à 15 GHz	1,1 dB			
				15 GHz à 18 GHz	1,6 dB			
		Distance 1 m 0,2 GHz à 2 GHz	Fa ≤ 50 dB/m -	0,2 GHz à 1 GHz	0,7 dB			
				1 GHz à 2 GHz	2,1 dB			SAE ARP958
Antenne log périodique		Distance 1 m 0,2 GHz à 1 GHz	Fa ≤ 50 dB/m	0,2 GHz à 1 GHz	0,7 dB			PRT FIC 000 MET 00077 SAE ARP958

ELECTRICITE HAUTE FREQUENCE / Facteur d'antenne (suite)

Objet	Caractéristique mesurée ou recherchée	Domaine d'application	Etendue de mesure	Incertitude élargie	Principe de la méthode (*)	Principaux moyens utilisés	Référence de la méthode
Antenne biconique, Logpériodique, Bilog, Dipôle	Facteur d'antenne	Distance 10 m 20 MHz à 1 000 MHz	Fa ≤ 60 dB/m	0,9 dB à 1,3 dB	SSM (Standard Site Method) Méthode des 3 antennes au dessus d'un plan de masse de reference	Site champ libre avec plan de masse VNA Kit de calibrage Antenne	PRT FIC 000 MET 00038 CISPR 16-1-6 ANSI C63.5
Antenne biconique, bilog	Facteur d'antenne	Distance 1 m 20 MHz à 300 MHz	Fa ≤ 60 dB/m	0,9 dB	Méthode des 3 antennes	Site champ libre VNA Kit de calibrage Antenne	PRT FIC 000 MET 00084 SAE ARP958
Antenne cadre	Facteur d'antenne champ magnétique FA _H	9 kHz – 80 MHz	-51,5 dBS/m à 0 dBS/m 0 dBS/m à 65 dBS/m	0,9 dB 1,1 dB	Méthode de la	Cellule TEM, VNA, kit de calibrage, charge Amplificateur, Atténuateur	PRT FIC 000 MET 00018
et boucle	Facteur d'antenne champ électrique FA _E	9 kHz – 80 MHz	0 dB/m à 51,5 dB/m 51,5 dB/m à 116,5 dB/m	0,9 dB 1,1 dB	cellule TEM		CISPR 16-1-6
Antenne fouet	Facteur d'antenne	9 kHz – 30 MHz	Fa ≤ 65 dB/m	1,3 dB	Méthode de la capacité	VNA, kit de	PRT FIC 000 MET 00042
	racieur u anienne	9 kHz – 100 kHz	85 dB/m ≤ Fa < 65 dB/m	1,5 dB	équivalente	calibrage, capacité	CISPR 16-1-6 ANSI C63.5 SAE ARP958

ELECTRICITE HAUTE FREQUENCE / Gain d'antenne

Objet	Caractéristique mesurée ou recherchée	Domaine d'application	Etendue de mesure	Incertitude élargie	Principe de la méthode (*)	Principaux moyens utilisés	Référence de la méthode
		Distance 3 m 1 GHz à 18 GHz	1 GHz à 5 GHz	1,3 dB	©.	Antennes, chambre anéchoïque (FAR), analyseur de réseau vectoriel	
			5 GHz à 15 GHz	1,1 dB			PRT FIC 000 MET 00075 CISPR 16-1-6 SAE ARP958
			15 GHz à 18 GHz	1,2 dB			
Antonno cornet	Coin	Distance 1 m 1 GHz à 18 GHz	1 GHz à 5 GHz	1,2 dB	Méthode des 3 antennes		PRT FIC 000 MET 00076 CISPR 16-1-6 SAE ARP958
Antenne cornet	Gain		5 GHz à 15 GHz	1,1 dB			
			15 GHz à 18 GHz	1,6 dB			
		Distance 1 m	0,2 GHz à 1 GHz	0,7 dB			PRT FIC 000 MET 00078
		0,2 GHz à 2 GHz	1 GHz à 2 GHz	2,1 dB			SAE ARP958

ELECTRICITE HAUTE FREQUENCE / Facteur de réflexion

Objet	Caractéristique mesurée ou recherchée	Domaine d'application	Etendue de mesure		Incertitude élargie	Principe de la méthode (*)	Principaux moyens utilisés	Référence de la méthode
				ρ ≤ 0,35	0,06	\Q.		PRT FIC 000 MET 00075
	Module du facteur réflexion	1 GHz à 18 GHz	ρ≤1	$0.35 < \rho \le 0.7$	0,09	Méthode hétérodyne	Antennes, chambre anéchoïque (FAR), analyseur de réseau vectoriel	PRT FIC 000 MET 00076
Antenne cornet				0,7 < ρ ≤ 1	0,12			FIXT FIC 000 WET 00076
		Distance 1 m 0,2 GHz à 2 GHz		ρ≤1	0,04			PRT FIC 000 MET 00078
Antenne log périodique		Distance 1 m 0,2 GHz à 1 GHz		ρ≤1	0,04			PRT FIC 000 MET 00077
Antenne biconique, Logpériodique,							Site champ libre avec plan de masse	PRT FIC 000 MET 00038
Bilog, Dipôle		20 MHz – 1 GHz		ρ≤1	0,03		VNA Kit de calibrage	PRT FIC 000 MET 00084

ROS:

ROS: Les valeurs et incertitudes du rapport d'onde stationnaire se déduisent de celles du module du facteur de réflexion selon ROS = $(1+\rho)/(1-\rho)$

Objet	Caractéristique mesurée ou recherchée	Domaine d'application	Etendue de mesure	Incertitude élargie	Principe de la méthode (*)	Principaux moyens utilisés	Référence de la méthode
Mesureur de champ Sonde isotropique	Champ électromagnétique Mesure de champ E Réponse en fréquence / Linéarité	10 kHz – 1GHz	1 V/m – 250 V/m	1 dB à 1,4 dB	Etalonnage par substitution	Sonde de mesure de champ étalon et cellule GTEM	PRT FIC 000 MET 00008 IEEE - 1309
		1 GHz – 18 GHz	1 V/m – 100 V/m	1,8 dB à 2,2 dB	Génération de champ étalon	Antenne de gain connu en chambre anéchoïque	
	Champ électromagnétique Mesure de champ E Anisotropie	10 kHz – 1 GHz	1 V/m à 100 V/m	0,35 dB à 0,75 dB	Isotropie / champ de référence	Cellule GTEM	
		1 GHz – 18 GHz		0,5 dB	Isotropie / champ de référence	Antenne et chambre anéchoïque	

Les incertitudes élargies correspondent aux aptitudes en matière de mesures et d'étalonnages (CMC) du laboratoire pour une probabilité de couverture de 95 %.

[#] Accréditation rendue obligatoire dans le cadre réglementaire français précisé par le texte cité en référence dans le document Cofrac LAB INF 99 disponible sur www.cofrac.fr

Date de prise d'effet : 26/11/2024 Date de fin de validité : 30/04/2026

Cette annexe technique annule et remplace l'annexe technique 2-5656 Rév. 11.

Comité Français d'Accréditation - 52, rue Jacques Hillairet 75012 PARIS

Tél.: +33 (0)1 44 68 82 20 - Fax: 33 (0)1 44 68 82 21 Siret: 397 879 487 00031 www.cofrac.fr

